Save and Sustainable by Design: A Potential Approach for Nanoinnovations

BIO NANONET

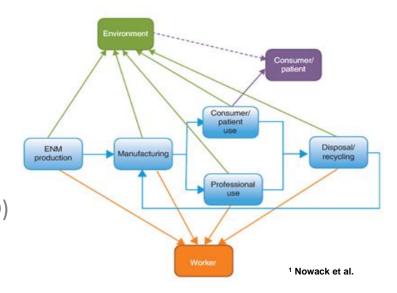
Schimpel, C.¹, Resch, S.¹, Vaquero Moralejo, C.², Trinkel, M.³ and Falk, A.¹

¹ BioNanoNet Forschungsgesellschaft mbH, Austria

² Fundacion Tecnalia Research & Innovation, Spain

³ JOANNEUM RESEARCH Forschungsgesellschaft mbH, Austria

5th International Conference NANOSAFE 2016 7th – 10th November | Grenoble | France



Emerging Technologies and Uncertain Risks

- Manufactured nanomaterials/products can offer a wealth of benefits but may also carry risks for human beings and the environment
- <u>Aim</u>: BioNanoNet is focused to develop
 - An innovative **nanosafety strategy** to identify the potential risks upon exposure to nanomaterials **along the entire life cycle** (from synthesis to disposal)
 - Qualitative: Hazard/Risk assessment
 - (Semi) Quantitative: Risk estimation

 Company-oriented recommendations on risk mitigation and improvement actions following the NANoREG Safe-by-Design (SbD)
Approach

¹ Nowack, Bernd, et al. "Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors." Nanotoxicology 7.6 (2012): 1152-1156.

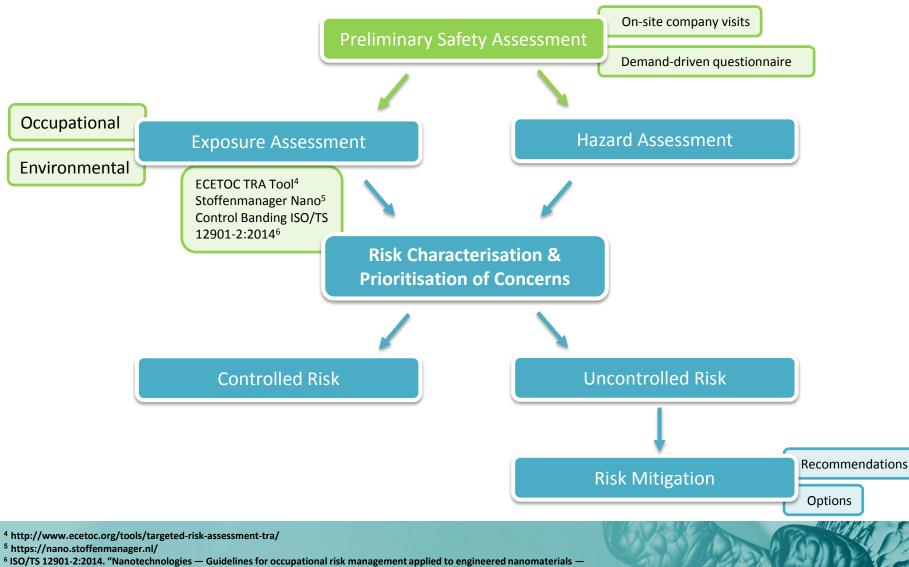
Safe-by-Design Approach NAN SREG

• Main pillars of SbD:

Life cycle assessment (LCA) and risk assessment (RA)

• Central question:

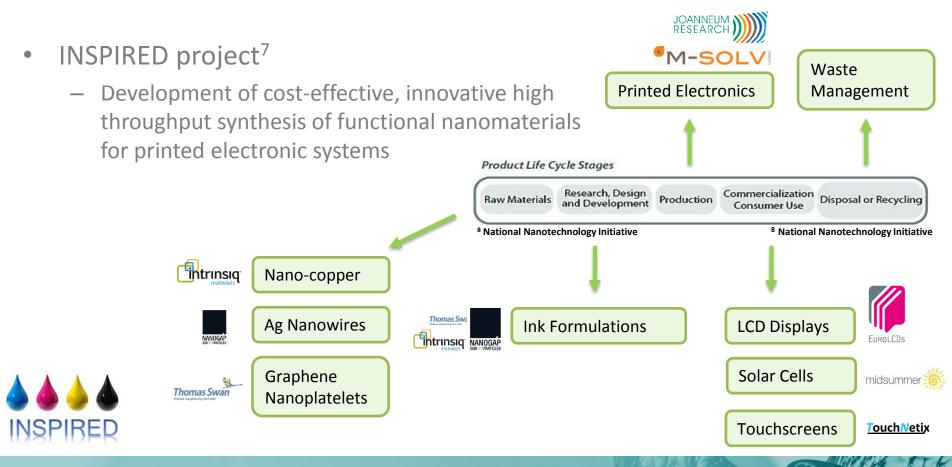
How may design influence quality and safety of nano-enabled products?


• Major aim:

Following the Safe-by-Design concept, a **safer product/process** will be created if the hazards and risks that could impact on downstream users in the lifecycle **are eliminated or controlled during design/manufacture**

FROM UNCERTAINTIES AND POTENTIAL RISKS TOWARDS CERTAINTY AND MANAGED RISKS

Uncertainties & Risk[®]


Nanosafety Strategy

Part 2: The use of the Control Banding approach in occupational risk management." 2014

Putting Knowledge into Practice

• Integration of the safety strategy in an industrial innovation process

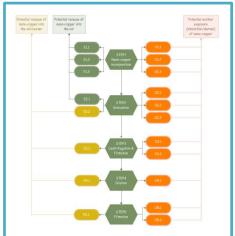
⁷ http://www.nano-inspired.eu/

⁸ National Nanotechnology Initiative. "Environmental, health and safety research strategy." 2011

BIO _ NANONET

STEP 1: Preliminary Safety Assessment

H2020-NMP-2014-2015/H2020-NMP-PILOTS-2014 EC Grant Agreement Number: 646155


"INdustrial Scale Production of Innovative nanomateRials for printEd Devices"

Questionnaire for Consortium Partners

- Input
 - Demand-driven questionnaire
 - Evaluation of workplace-/process-related • sources of nanomaterials, safe practice and control measures, maintenance, waste management
 - Company visit
 - Interviews with health and safety managers, worker, technicians
 - Itemization of relevant processes into • single process steps

TITLE						
NAME						
PROCESS	PROC1					
PRODUCT	PC ²					
PROCESS DESCRIPTION						
OPERATIONAL CONDITIONS						
	Name	Physical form	Concentr ation			MSDS
CHEMICALS					Г	
					T	
OPERATION		Name	Variables			
	(Normal)		Duration			
			Frequency			
			Others			
	(Maintenances/Cleaning operations)		Duration			
			Frequency			
	(Others)					
RISK MANAGEMENT MEASURE	s					
Related to Workers						
Related to the environment						
Waste management measures						
OBSERVATIONS						

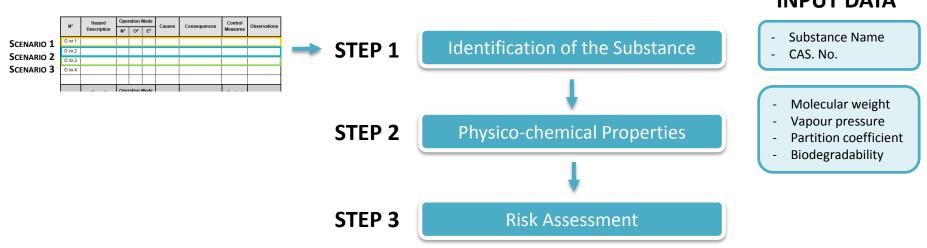
- Output
 - Workflow-diagrams

STEP 2a: Hazard Assessment

- Collection, collation and evaluation of...
 - Toxicological and ecotoxicological data (doseresponse studies, case studies, peer reviewed data)
 - Material safety data sheets
 - Occupational and environmental benchmark limits (e.g. PNEC, DNEL)

STEP 2b: Exposure Assessment

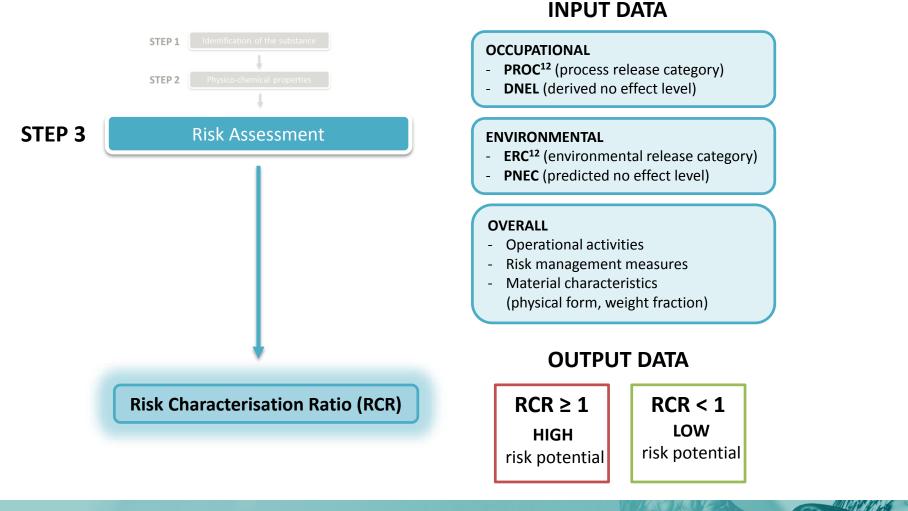
- Pinpointing relevant key scenarios
 - Occupational exposure scenarios
 - Environmental exposure scenarios


N°	Hazard Description	Operation Mode			C	Control	Observations	
		N ¹	O ²	E ₃	Causes	Consequences	Measures	Observations
0 xx.1								
0 xx.2								
O xx.3								
O xx.4								
N°	Hazard Description	Operation Mode		Causes	Consequences	Control	Observations	
		N ¹	O ²	E ₃	1		Measures	
E xx.1								
E xx.2								
E xx.3								
E xx.4								
		-						

N¹=Normal; O²=Others (Maintenance, cleaning); E³=Emergency

STEP3: Risk Characterisation & Prioritisation

- Identified exposure scenarios are linked to ECETOC TRA® (Targeted Risk Assessment) tool⁹
 - Preferably used (NANoREG¹⁰, NSC¹¹) considering REACH/ECHA relevant aspects



INPUT DATA

¹⁰ http://www.nanoreg.eu/

¹¹ http://www.nanosafetycluster.eu/

STEP 3: Risk Characterisation & Prioritisation

Impact & Benefits of the Nanosafety Approach

- The presented approach...
 - creates a company-oriented library of critical hotspots associated with initial exposure estimates
 - helps to enhance the safety level and/or improve the performance of existing exposure monitoring systems/risk management strategies
 - aids to design-out uncertainties and potential risks at the earliest possible and/or feasible stage → safe-by-design
 - will support industry with a clear safety framework, based on the review of regulatory aspects to gain regulatory preparedness

Thank you for your Attention!

Christa Schimpel BioNanoNet Forschungsgesellschaft mbH, Austria

